【题目】已知定圆:,动圆过点 且与圆相切,记圆心的轨迹为.
(1)求曲线的方程;
(2)已知直线 交圆于两点.是曲线上两点,若四边形的对角线,求四边形面积的最大值.
【答案】(1);(2).
【解析】分析:(1)根据动圆与定圆相内切,结合椭圆的定义,即可求得动圆圆心的轨迹方程;
(2)由题可知,,因圆心坐标在直线 上,则直径,将问题转化为求的最大值. 根据题意设直线方程为,设, 与椭圆方程联立,整理得关于的一元二次方程,由韦达定理及,结合函数的单调性,由此可以求出四边形面积的最大值.
详解:解:(1)依题意得:,圆的半径,
点 在圆内,圆内切于圆,
,
点的轨迹为椭圆,设其方程为
则,,,
轨迹的方程为:.
(2)点在直线 上,即直线经过圆的圆心,
,故设直线方程为,设,
联立消得,
,且
,
,
四边形的面积,
(当且仅当时取等号),
即四边形面积的最大值为.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.
(Ⅰ)求圆的标准方程;
(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+ )+2 =0,曲线C2的参数方程为 (θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维中,底面.
(1)从三棱锥中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;
(2)如图,已知垂足为,垂足为.
(i)证明:平面⊥平面;
(ii)作出平面与平面的交线,并证明是二面角的平面角.(在图中体现作图过程不必写出画法)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x为( ) .
A. 90 B. 120 C. 180 D. 200
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.
(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;
(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com