在数列中,若(,,为常数),则称为数列.
(1)若数列是数列,,,写出所有满足条件的数列的前项;
(2)证明:一个等比数列为数列的充要条件是公比为或;
(3)若数列满足,,,设数列的前项和为.是否存在
正整数,使不等式对一切都成立?若存在,求出的值;
若不存在,说明理由.
(1);;;.(2)证明:一个等比数列为数列的充要条件是公比为或;(3).
解析试题分析:(1)由是数列,,,有,根据定义可知,,从而写出满足条件的数列的前项;(2)先证必要性,设数列是等比数列,(为公比且),由定义(为与无关的常数),则;再证充分性,若一个等比数列的公比,则, ,所以 为数列;若一个等比数列的公比,则,,所以得证.(3)先利用题中所给条件表示出 ,假设存在正整数使不等式对一切都成立.即,当时,,又为正整数,.接着证明对一切都成立.利用进行裂项相消.
试题解析:(1)由是数列,,,有,
于是,
所有满足条件的数列的前项为:
;;;. 4分
(2)(必要性)设数列是等比数列,(为公比且),则
,若为数列,则有
(为与无关的常数)
所以,或. 2分
(充分性)若一个等比数列的公比,则, ,所
以 为数列;
若一个等比数列
科目:高中数学 来源: 题型:解答题
正项数列{an}的前n项和Sn满足:
(1)求数列{an}的通项公式an;
(2)令,数列{bn}的前n项和为Tn.证明:对于任意n N*,都有Tn<
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。
(1)试写出销售量与n的函数关系式;
(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
各项均为正数的数列{}中,a1=1,是数列{}的前n项和,对任意n∈N﹡,有2=2p+p-p(p∈R).
(1)求常数p的值;
(2)求数列{}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com