精英家教网 > 高中数学 > 题目详情

【题目】过双曲线的右焦点作一条直线,直线与双曲线相交于两点,且,若有且仅有三条直线,则双曲线离心率的取值范围为__________

【答案】

【解析】中,a=1,所以2a=2,由题意过右焦点作直线有且仅有三条直线l,使得弦AB的长度恰好等于2,所以一条为x轴,另外两条肯定是与右支分别有两个交点,所以 ,

点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出ac,代入公式;②只需要根据一个条件得到关于abc的齐次式,结合b2c2a2转化为ac的齐次式,然后等式(不等式)两边分别除以aa2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}的各项均为正数,a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+ + +…+ + ,参照教材上推导等比数列前n项和公式的推导方法,求证:{ Tn ﹣6n}是一个常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在-岁之间的人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:.把年龄落在区间内的人分别称为“青少年”和“中老年”.

关注

不关注

合计

青少年

中老年

合计

(1)根据频率分布直方图求样本的中位数保留两位小数和众数;

(2)根据已知条件完成列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,若n=4时,则输出的结果为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足4nSn=(n+1)2an(n∈N*).a1=1
(Ⅰ)求an
(Ⅱ)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时(万元).每件商品售价为0.05万元.通过分析,该工厂生产的商品能全部售完.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:

(1)三棱柱侧面展开图的对角线长;

(2)从B经M到C1的最短路线长及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1 , C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.

(1)求的值;

(2)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案