精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上有最大值和最小值,设

1)求的值;

2)若不等式上有解,求实数的取值范围;

3)若有三个不同的实数解,求实数的取值范围.

【答案】1;(2;(3.

【解析】

1)由函数,所以在区间上是增函数,故,由此解得的值;

2)由(1)可知,所以令,不等式可化为,求出的最大值,从而求得取值范围;

3)令,则原方程有三个不同的实数解转化为有两个不同的实数解,其中,然后运用“三个二次”即:二次函数、二次不等式、二次方程之间的关系列出式子求解得答案.

1)函数

因为,所以在区间上是增函数,故 ,解得

2)由已知可得,所以令,不等式可化为,因,故,故上能成立,

,因为 ,故

所以的取值范围是

3)令 (),图象如下:

则方程变为:

化简得:

设方程有两个不同的实数解

其中,记

则有: ①或 ②,

解①得,;②无解,

实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.

(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;

(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?

(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关

甲生产线

乙生产线

合计

合格品

不合格品

合计

附:(其中为样本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于任意x∈R都有fx)+2f(-x)=3cosx-sinx,则函数f(2x图象的对称中心为( )

A. (kπ-,0)(k∈Z) B. ,0)(k∈Z)

C. (kπ-,0)(k∈Z) D. ,0)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极值;

2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

求直线l的普通方程及曲线C的直角坐标方程;

若直线l与曲线C交于AB两点,求线段AB的中点P到坐标原点O的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:

1)在推广期内,均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;

3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.

参考数据:其中

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一组织一次数学竞赛,选取50名学生成绩(百分制,均为整数),根据这50名学生的成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中a的值;

2)估计选取的50名学生在这次数学竞赛中的平均成绩;

3)用分层抽样的方法在分数段为的学生成绩中抽取一个样本容量为5的样本,

再随机抽取2人的成绩,求恰有一人成绩在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列中,若,则称数列为“凸数列”.已知数列为“凸数列”,且,则数列的前2019项和为( )

A. 1 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均值和中位数;

2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?

3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

查看答案和解析>>

同步练习册答案