精英家教网 > 高中数学 > 题目详情
2.已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC交圆O于点圆B,∠PAB=30°,则圆O的半径为$\sqrt{3}$.

分析 推导出∠PCA=30°,∠CAP=∠ABC=90°,AB=$\sqrt{3}$,由此能求出圆O的半径.

解答 解:∵PA是圆O的切线,切点为A,PA=2,
AC是圆O的直径,PC交圆O于点圆B,∠PAB=30°,
∴∠PCA=30°,∠CAP=∠ABC=90°,AB=$\sqrt{3}$,
∴AC=2AB=2$\sqrt{3}$,
∴圆O的半径为$\frac{1}{2}AC$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查圆的半径的求法,是基础题,解题时要认真审题,注意空的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}$,其中a=$\int_0^3$(x2-1)dx,则实数$\frac{y}{x+1}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知全集S={1,2,3,4,5},A={x∈S|x2-5qx+4=0}
(1)若∁SA=S,求q的取值范围;
(2)若∁SA中有四个元素,求∁SA和q的值;
(3)若A中仅有两个元素,求∁SA和q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知下列一组数据等式:
s1=1;
s2=2+3=5
s3=4+5+6=15
s4=7+8+9+10=34
s5=11+12+13+14+15=65
s6=16+17+18+19+20+21=111;

(1)写出s7对应的等式;
(2)先求出sn对应等式的第一项,并写出sn对应的等式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是由一些小正方体摞成的,第(1)堆有1个,第(2)堆有4个,第(3)堆有10个…,则第n堆有$\frac{n(n+1)(n+2)}{6}$小正方体.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个单位向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow{b}$.
(1)已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,若$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,求k的值;
(2)若A,B,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,∠ABC=$\frac{π}{4}$,O为AB上一点,3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(1)求证:平面PBD⊥平面COD;
(2)求点O到平面BDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某学校高一、高二、高三年级分别有720、720、800人,现从全校随机抽取56人参加防火防灾问卷调查.先采用分层抽样确定各年级参加调查的人数,再在各年级内采用系统抽样确定参加调查的同学,若将高三年级的同学依次编号为001,002,…,800,则高三年级抽取的同学的编号不可能为(  )
A.001,041,…761B.031,071,…791C.027,067,…787D.055,095,…795

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直角坐标系中第四象限内的点集,用描述法可表示为{(x,y)|x>0且y<0}.

查看答案和解析>>

同步练习册答案