精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 设方程f(x)=2﹣x+b(b∈R)的四个实根从小到大依次为x1 , x2 , x3 , x4 , 对于满足条件的任意一组实根,下列判断中一定成立的是(  )
A.x1+x2=2
B.e2<x3x4<(2e﹣1)2
C.0<(2e﹣x3)(2e﹣x4)<1
D.1<x1x2<e2

【答案】B
【解析】解:方程f(x)=2﹣x+b(b∈R)的根可化为

函数y=f(x)﹣2﹣x与y=b图象的交点的横坐标,

作函数y=f(x)﹣2﹣x的图象,

由图象可得,0<x1<1<x2<e<x3<2e﹣1<x4<2e,

故x3x4>e2

易知|ln(2e﹣x3)|>|ln(2e﹣x4)|,

即ln(2e﹣x3)>﹣ln(2e﹣x4),

即ln(2e﹣x3)+ln(2e﹣x4)>0,

即4e2﹣2e(x3+x4)+x3x4>1,

即2e(x3+x4)<x3x4+4e2﹣1,

∴x3x4<(2e﹣1)2,∴

所以答案是:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若f(x)= (0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个单位,再把所有的点的横坐标缩短到原来的 倍(纵坐标不变),得到函数y=g(x)的图象,则图象y=g(x)的一个对称中心为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆C1 的左、右焦点分别为F1 , F2 , 其中F2也是抛物线C2:y2=4x的焦点,点P为C1与C2在第一象限的交点,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过F2且与坐标轴不垂直的直线交椭圆于M、N两点,若线段OF2上存在定点T(t,0)使得以TM、TN为邻边的四边形是菱形,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是
(1)求清扫卫生岗位恰好一班1人、二班2人的概率;
(2)设随机变量X为在维持秩序岗位服务的一班的志愿者的人数,求X分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,输出的x的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 (n∈N*,an∈Z,bn∈Z).
(1)求证:an2﹣8bn2能被7整除;
(2)求证:bn不能被5整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 (ω>0)的图象与x轴正半轴交点的横坐标构成一个公差为 的等差数列,若要得到函数g(x)=Asinωx的图象,只要将f(x)的图象(  )个单位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移

查看答案和解析>>

同步练习册答案