精英家教网 > 高中数学 > 题目详情

【题目】已知圆,圆过点且与圆相切,设圆心的轨迹为曲线

(1)求曲线的方程;

(2)点为曲线上的两点(不与点重合),记直线的斜率分别为,若,请判断直线是否过定点. 若过定点,求该定点坐标,若不过定点,请说明理由.

【答案】(1) (2)见解析

【解析】

1)结合题意发现圆心C的轨迹是以DB为焦点的椭圆,建立方程,即可。(2)设出直线PQ的方程,建立方程,将直线方程代入椭圆方程,结合根与系数关系,得到m,k的关系式,计算定点,即可。

(1)设圆C的半径为r,依题意,|CB|=r,|CD|=4r

进而有|CB|+|CD|=4,所以圆心C的轨迹是以DB为焦点的椭圆,

所以圆心C的轨迹方程为

(2)设点的坐标分别为

设直线的方程为(直线的斜率存在),

可得

整理为:

联立,消去得:

,有

,可得

故有:

整理得:,解得:

时直线的方程为,即,过定点不合题意,

时直线的方程为,即,过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.

(1)求椭圆C的标准方程;

(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右焦点为为圆与椭圆的一个公共点,.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)如图,过作直线与椭圆交于两点,点为点关于轴的对称点.

(1)求证:

(2)试问过的直线是否过定点?若是,请求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列命题中正确的个数是(

①当时,函数上有最小值;②当时,函数是单调增函数;③若,则;④方程可能有三个实数根.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集)具有性质:对任意),两数中至少有一个属于集合,现给出以下四个命题:①数集具有性质;②数集具有性质;③若数集具有性质,则;④若数集)具有性质,则;其中真命题有________(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BCADAB∠BCD45°∠BAD90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )

A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.下列有关说法中正确的个数是( )个

①对圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的太极函数;

④直线所对应的函数一定是圆的太极函数.

A.B.C.D.

查看答案和解析>>

同步练习册答案