【题目】已知抛物线E:x2=2py(p>0)的焦点为F,点M是直线y=x与抛物线E在第一象限内的交点,且|MF|=5.
(1)求抛物E的方程.
(2)直线l与抛物线E相交于两点A,B,过点A,B分别作AA1⊥x轴于A1,BB1⊥x轴于B1,原点O到直线l的距离为1.求的最大值.
科目:高中数学 来源: 题型:
【题目】已知点、是双曲线:的左右焦点,其渐近线为,且右顶点到左焦点的距离为3.
(1)求双曲线的方程;
(2)过的直线与相交于、两点,直线的法向量为,且,求的值;
(3)在(2)的条件下,若双曲线在第四象限的部分存在一点满足,求的值及的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设椭圆的左,右焦点分别为,左,右顶点分别为,,点,,为椭圆上位于轴上方的两点,且,直线的斜率为,记直线,的斜率分别为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查消费者的维权意识,青岛二中的学生记者在五四广场随机调查了120名市民,按他们的年龄分组:第1组[20.30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70),得到的频率分布直方图如图所示.
(1)若要从被调查的市民中选1人采访,求被采访人恰好在第2组或第5组的概率;
(2)已知第1组市民中男性有2人,学生要从第1组中随机抽取3名市民组成维权志愿者服务队,求至少有两名女性的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于实数和两定点,在某图形上恰有个不同的点,使得,称该图形满足“度契合”.若边长为4的正方形中,,且该正方形满足“4度契合”,则实数的取值范围是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形中,,,分别为,的中点,,为中点现将四边形沿折起,使平面平面,得到如图②所示的多面体在图②中,
(1)证明:;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.
(1)求观光长廊PQST所在的曲线的方程;
(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinπx,g(x)=x2﹣x+2,则( )
A. 曲线y=f(x)+g(x)不是轴对称图形
B. 曲线y=f(x)﹣g(x)是中心对称图形
C. 函数y=f(x)g(x)是周期函数
D. 函数最大值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com