精英家教网 > 高中数学 > 题目详情

如图3,已知二面角的大小为,菱形在面内,两点在棱上,的中点,,垂足为.
(1)证明:平面
(2)求异面直线所成角的余弦值.

(1)详见解析  (2)

解析试题分析:(1)题目已知,利用线面垂直的性质可得,已知角,利用余弦定理即可说明,即垂直于面内两条相交的直线,根据线面垂直的判断即可得到直线垂直于面.
(2)菱形为菱形可得,则所成角与角大小相等,即求角的余弦值即可,利用菱形所有边相等和一个角为即可求的的长度,根据(1)可得,即角为二面角的平面角为,结合为直角三角形与的长度,即可求的长度,再直角中,已知,利用直角三角形中余弦的定义即可求的角的余弦值,进而得到异面直线夹角的余弦值.
(1)如图,因为,,所以,连接,由题可知是正三角形,又的中点,所以,而,故平面.

(2)因为,所以所成的角等于所成的角,即所成的角,由(1)可知,平面,所以,又,于是是二面角的平面角,从而,不妨设,则,易知,在中,,连接,在中,,所以异面直线所成角的余弦值为.
考点:异面直线的夹角 二面角 线面垂直

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,丄平面.
(Ⅰ)证明:
(Ⅱ)求二面角的正弦值;
(Ⅲ)求三棱锥外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且=2.求证:直线EG,FH,AC相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(1)求证:EF∥平面BDC1;  
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为平行四边形,是正三角形,平面平面
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱中,,E为CD上一点,

(1)证明:BE⊥平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

查看答案和解析>>

同步练习册答案