精英家教网 > 高中数学 > 题目详情

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且

(1)若过三点的圆恰好与直线相切,求椭圆C的方程;

(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

 

【答案】

1)由题意,得,所以 

   由于,所以的中点,

所以

所以的外接圆圆心为,半径…………………3分

又过三点的圆与直线相切,

所以解得

所求椭圆方程为 …………………………………………………… 6分

(2)有(1)知,设的方程为:

将直线方程与椭圆方程联立

,整理得

设交点为,因为

……………………………………8分

若存在点,使得以为邻边的平行四边形是菱形,

由于菱形对角线垂直,所以

 

的方向向量是,故,则

,即

由已知条件知………………………11分

,故存在满足题意的点的取值范围是 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点、焦点在x轴上椭圆的离心率e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年四川卷理)设椭圆的左、右焦点分别是,离心率,右准线上的两动点,且

(Ⅰ)若,求的值;

(Ⅱ)当最小时,求证共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 已知椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线且与x轴垂直,动直线轴垂直,于点P,求线段PF1的垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

设椭圆的左、右焦点分别是F1、F2,离心率,右准线l上的两动点M、N,且
(Ⅰ)若,求a、b的值;
(Ⅱ)当最小时,求证共线。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:解答题

已知中心在坐标原点、焦点在x轴上椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

同步练习册答案