精英家教网 > 高中数学 > 题目详情

【题目】已知离心率为的椭圆经过点.

(1)求椭圆的方程;

(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.

【答案】(1);(2)是,

【解析】

(1)根据可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程;

(2) 可设所在直线的方程为,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线的斜率分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积

(1)因为椭圆的离心率为,所以,即

,所以,①

因为点在椭圆上,所以,②

由①②解得,所以椭圆C的方程为

(1)可知,可设所在直线的方程为

,得

,则

设直线的斜率分别为

因为三点共线,所以,即

所以

因为直线的斜率成等差数列,所以

,化简得,即点恒在一条直线上,

又因为直线方程为,且

所以是定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,其右焦点为,且点在椭圆C上.

求椭圆C的方程;

设椭圆的左、右顶点分别为ABM是椭圆上异于AB的任意一点,直线MF交椭圆C于另一点N,直线MB交直线Q点,求证:ANQ三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.

(1)求的值;

2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?

(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)

列联表

男性

女性

合计

消费金额

消费金额

合计

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,且成等比数列,数列满足

1)求数列的通项公式;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )

A.各月最高气温平均值与最低气温平均值总体呈正相关

B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大

C.全年中各月最低气温平均值不高于10°C的月份有5

D.20187月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

同步练习册答案