精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

【答案】C
【解析】解:选项A:f(x)=x2的定义域为R,又∵f(﹣x)=(﹣x)2=x2 , ∴f(﹣x)=f(x),即f(x)是偶函数.但y=x2在(0,+∞)上单调递增,故A不正确;
选项B:记f(x)=x+1,则f(1)=2,f(﹣1)=0,∵f(﹣1)≠f(1),且f(﹣1)≠﹣f(1),∴y=x+1是非奇非偶函数,故B不正确;
选项C:定义域为(﹣∞,0)∪(0,+∞),记f(x)=﹣lg|x|,
∵f(﹣x)=﹣lg|﹣x|=﹣lg|x|,∴f(﹣x)=f(x),即f(x)是偶函数
当x∈(0,+∞)时,y=﹣lgx.∵y=lgx在(0,+∞)上单调递增,∴y=﹣lgx在(0,+∞)上单调递减故C正确;
选项D:记f(x)=﹣2x , 则f(1)=﹣ ,f(﹣1)=﹣2,∵f(﹣1)≠f(1),且f(﹣1)≠﹣f(1),∴y=﹣2x是非奇非偶函数,故D不正确.
故选:C.
【考点精析】认真审题,首先需要了解函数单调性的判断方法(单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较),还要掌握函数的奇偶性(偶函数的图象关于y轴对称;奇函数的图象关于原点对称)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段,垂足为,在直线,,当点在圆上运动时.

(1)求点的轨迹的方程,并指出轨迹.

(2)直线l不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆 上任意一点,点与圆心关于原点对称.线段的中垂线与交于点.

(1)求动点的轨迹方程

(2)设点,若直线轴且与曲线交于另一点,直线与直线交于点,证明:点恒在曲线上,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,点P在面对角线AC上运动,给出下列四个命题:

①D1P∥平面A1BC1

②D1P⊥BD;

③平面PDB1⊥平面A1BC1

④三棱锥A1﹣BPC1的体积不变.

则其中所有正确的命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海礁A处有一风暴中心,距离风暴中心A正东方向200km的B处有一艘轮船,正以北偏西a(a为锐角)角方向航行,速度为40km/h.已知距离风暴中心180km以内的水域受其影响.

(1)若轮船不被风暴影响,求角α的正切值的最大值?

(2)若轮船航行方向为北偏西45°,求轮船被风暴影响持续多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点是双曲线的顶点,且椭圆的上顶点到双曲线的渐近线的距离为.

(1)求椭圆的方程;

(2)若直线相交于两点,与相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下3个命题;

①双曲线上任意一点到两条渐近线的距离乘积是定值;

②双曲线的离心率分别是,则是定值;

③过抛物线的顶点任作两条互相垂直的直线与抛物线的交点分别是,则直线过定点;其中正确的命题有(  )

A. 3个 B. 2个 C. 1个 D. 0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线Ca>0,b>0)的渐近线方程为yxO为坐标原点,点在双曲线上.

(I)求双曲线C的方程.

(II)若斜率为1的直线l与双曲线交于PQ两点,且=0,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移 个单位长度后,若所得图象与原图象重合,则ω的最小值等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

同步练习册答案