【题目】已知抛物线的顶点为,焦点.
(1)求抛物线的方程;
(2)过作直线交抛物线于、两点.若直线、分别交直线:于、两点,求的最小值.
科目:高中数学 来源: 题型:
【题目】武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:
现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
劳动节当日客流量 | |||
频数(年) | 2 | 4 | 4 |
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:
劳动节当日客流量 | |||
型游船最多使用量 | 1 | 2 | 3 |
若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左顶点为,右焦点为,斜率为1的直线与椭圆交于,两点,且,其中为坐标原点.
(1)求椭圆的标准方程;
(2)设过点且与直线平行的直线与椭圆交于,两点,若点满足,且与椭圆的另一个交点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.
(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;
(2)从抽取的12人中随机选取3人,记表示成绩不低于76分的学生人数,求的分布列及期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆与轴交于 两点,且.
(1)求椭圆的方程;
(2)设点是椭圆上的一个动点,且直线与直线分别交于 两点.是否存在点使得以 为直径的圆经过点?若存在,求出点的横坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.
Ⅰ求证;
Ⅱ若平面ABCD.
求二面角的大小;
在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是国家统计局公布的2013-2018年入境游客(单位:万人次)的变化情况,则下列结论错误的是( )
A.2014年我国入境游客万人次最少
B.后4年我国入境游客万人次呈逐渐增加趋势
C.这6年我国入境游客万人次的中位数大于13340万人次
D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com