精英家教网 > 高中数学 > 题目详情
已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(1)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(2)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
(1);(2)

试题分析:(1)设),方程为,与抛物线方程联立,利用直线与抛物线y2 = 4x相切,故,求,故切线的方程。同理可求得切线方程为,联立得交点,再注意到已知条件直线AB过抛物线C的焦点F,故表示直线AB的方程为,将抛物线焦点代入,得,从而发现点P横坐标为,故点P在定直线上;(2)列面积关于某个变量的函数关系式,再求函数最小值即可,由已知得,,故,又高为,故三角形的面积为,再求最小值即可.
(1)设).
易知斜率存在,设为,则方程为.
得,        ①
由直线与抛物线相切,知.
于是,方程为.
同理,方程为.
联立方程可得点坐标为 ,
∵ 方程为
过抛物线的焦点.
,∴,点P在定直线上.
(2)由(1)知,的坐标分别为
.
∴ .   
),
知,,当且仅当时等号成立.
∴ .
,则.
∴ 时,时,.在区间上为减函数;
在区间上为增函数.∴ 时,取最小值.
∴ 当
时,面积取最小值.         13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,求过点及抛物线与轴两个交点的圆的方程;
(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C1与抛物线C2:y2=8x有相同的焦点F,它们在第一象限内的交点为M,若双曲线C1的焦距为实轴长的2倍,则|MF|=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的顶点在原点,焦点为,动点在抛物线上,点,则的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0与到y轴的距离之和的最小值是(  )
A.B.C.2 D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=ax2的准线方程是y=2,则a的值为(  )
A.B.C.8D.﹣8

查看答案和解析>>

同步练习册答案