精英家教网 > 高中数学 > 题目详情
8.已知线段AB的端点B的坐标是(-4,3),端点A在圆(x-1)2+y2=4上运动,求线段AB的中点M的轨迹方程.

分析 设出A和M的坐标,由中点坐标公式把A的坐标用M的坐标表示,然后代入圆的方程即可得到答案.

解答 解:设A(x1,y1),线段AB的中点M为(x,y).
则$\left\{\begin{array}{l}\frac{-4+{x}_{1}}{2}=x\\ \frac{3+{y}_{1}}{2}=y\end{array}\right.$,即$\left\{\begin{array}{l}{x}_{1}=2x+4\\{y}_{1}=2y-3\end{array}\right.$①.
∵端点A在圆(x-1)2+y2=4上运动,
∴(2x+3)2+(2y-3)2=4.
∴线段AB的中点M的轨迹方程是(x+$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.
故答案为:(x+$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.

点评 本题考查了与直线有关的动点轨迹方程,考查了代入法,关键是运用中点坐标公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=loga(x+1),g(x)=loga(1-x)其中(a>0且a≠1).
(1)判断f(x)-g(x)的奇偶性,并说明理由;
(2)求使f(x)-g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)={log_a}({a-{a^x}})({0<a<1})$的反函数为f-1(x)
(1)判断f(x)的单调性并证明;
(2)解关于x的不等式f-1(x2-2)<f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?k∈R,使直线y=kx+1与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)无公共点”为假命题,则实数b的取值范围是b≥1且b≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)求k的取值范围;
(3)在y轴上,是否存在定点E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{{\begin{array}{l}{f(x+2)+1,x<3}\\{{3^x},x≥3}\end{array}}\right.$,则f(log34)=(  )
A.4B.28C.37D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=x+\frac{1}{x}$,
(1)证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[2,7]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在正方体AC1中,求直线A1C1与直线B1C所成的角度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.小张家想利用一面长度超过20m的墙,再用竹篱笆围成一个矩形鸡场,小张家已备足可以围20m长的竹篱笆.试问:矩形鸡场的长和宽各为多少米时,鸡场的面积最大?最大面积是多少平方米?

查看答案和解析>>

同步练习册答案