精英家教网 > 高中数学 > 题目详情

已知正△ABC的顶点A在平面α上,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:构建如图的三角形,不妨令正三角形的边长为1,设出B,C到面的距离,则DG的长度为两者和的一半,下研究DG的取值范围即可.
解答:解:设正△ABC边长为1,则线段AD=
设B,C到平面α距离分别为a,b,
则D到平面α距离为h=
射影三角形两直角边的平方分别为1-a2,1-b2
设线段BC射影长为c,则1-a2+1-b2=c2,(1)
又线段AD射影长为
所以(2+=AD2=,(2)
由(1)(2)联立解得 ab=
所以sinα====,当a=b=时等号成立.
又α是个锐角,当面与面接近于垂直时,等边三角形的射影不可能是直角三角形,正弦值不可能趋近于1,故只能选B.
故选B
点评:考查线面角的求法,本题在做题中,线面角正弦的最小值易求出,而上界不易界定,此时宜根据选项用排除法筛选.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α上,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围是(  )
A、[
6
3
,1)
B、[
6
3
3
2
)
C、[
1
2
3
2
)
D、(
1
2
6
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α内,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α内的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的最小值为
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α上,顶点B、C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的投影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围为
[
6
3
3
2
)
[
6
3
3
2
)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山中学高二(上)期中数学试卷(文科)(解析版) 题型:填空题

已知正△ABC的顶点A在平面α上,顶点B、C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的投影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围为   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州市高三(上)期末数学试卷(理科)(解析版) 题型:选择题

已知正△ABC的顶点A在平面α上,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案