精英家教网 > 高中数学 > 题目详情

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC

(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

【答案】
(1)解:如图,以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,

则A1(2,0,4),B(2,2,0),C(0,2,0),D(0,0,0),E(0,2,1)

∴A1C⊥平面BED


(2)解:∵

设平面A1DE的法向量为

得﹣2x+2y﹣3z=0,﹣2x﹣4z=0,

同理得平面BDE的法向量为

∴cos< >= = =﹣

所以二面角A1﹣DE﹣B的余弦值为


【解析】(1)以DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则 ,由向量法能证明A1C⊥平面BED.(2)由 ,得到平面A1DE的法向量 ,同理得平面BDE的法向量为 ,由向量法能求出二面角A1﹣DE﹣B的余弦值.
【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )

A. 18种 B. 24种 C. 36种 D. 48种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若P为椭圆 =1上任意一点,F1 , F2为左、右焦点,如图所示.

(1)若PF1的中点为M,求证:|MO|=5﹣ |PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)椭圆上是否存在点P,使 =0,若存在,求出P点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足(
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为且椭圆经过点.

()求椭圆的方程;

()设过点的直线与椭圆交于两点是线段上的点求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为 ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表所示:

x

6

8

10

12

y

2

3

5

6

画出上表数据的散点图如图所示
(其中 =

(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+
(2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力

查看答案和解析>>

同步练习册答案