精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】

)根据椭圆截直线所得的线段的长度为,可得椭圆过点 ,结合离心率即可求得椭圆方程;

(Ⅱ)分类讨论:当直线的斜率不存在时,四边形的面积为 ; 当直线的斜率存在时,设出直线方程,与椭圆方程联立,由 ,代入曲线C,整理出k,m的等量关系式,再根据 写出面积的表达式整理即可得到定值。

(Ⅰ)由解得

得椭圆的方程为.

(Ⅱ)当直线的斜率不存在时,直线的方程为

此时四边形的面积为

当直线的斜率存在时,设直线方程是,联立椭圆方程

到直线的距离是

因为点在曲线上,所以有

整理得

由题意四边形为平行四边形,所以四边形的面积为

, 故四边形的面积是定值,其定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为3

1)求椭圆E的标准方程;

2)过点A作两条互相垂直的直线分别交椭圆于MN两点,求证:直线MN恒过定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,求函数处的切线方程;

2)记函数的导函数是,若不等式对任意的实数恒成立,求实数的取值范围;

3)设函数是函数的导函数,若函数存在两个极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点.

1)若为线段上的动点,证明:平面平面

2)若为线段上的动点(不含),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面平面为等边三角形,的中点.

1)求证:

2)若为线段上一点,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点满足,直线的方程为,且与曲线交于不同两点.

1)求曲线的方程;

2)设点,直线的斜率分别为,且,判断直线是否过定点?若过定点,求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ABEDCF和一个四棱锥PABCD组合而成,其中EFEAEB2AEEBPAPD,平面PAD∥平面EBCF

1)证明:平面PBC∥平面AEFD

2)求直线AP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面,,点分别是的中点.

1)证明:平面

2)设,当为何值时,平面,试证明你的结论.

查看答案和解析>>

同步练习册答案