精英家教网 > 高中数学 > 题目详情

【题目】某市据实际情况主要采取以下四种扶贫方式:第一,以工代赈方式,指政府投资建设基础设施工程,组织贫困地区群众参加工程建设并获得劳务报酬,第二,整村推进方式指以贫困村为具体帮扶对象,帮扶对口到村,资金安排到村,扶贫效益到户,第三,科技扶贫方式,指组织科技人员深入贫困乡村实地指导、技术培训等传授科技知识,第四,移民搬迁方式,指对目前极少数居住在生存条件恶劣、自然资源贫乏地区的特困人口,实行自愿移民,该市为了2020年更好的完成精准扶贫各项任务,2020年初在全市贫困户(分一般贫困户和五特户两类)中随机抽取了5000户就目前的主要四种扶贫方式行了问卷调查,支持每种扶贫方式的结果如表:

调查的贫困户

支持以工代赈户数

支持整村推进户数

支持科技扶贫户数

支持移民搬迁户数

一般贫困户

1200

1600

200

五特户(五保户和特困户)

100

100

已知在被调查的5000户中随机抽取一户支持整村推进的概率为0.36.

(Ⅰ)现用分层抽样的方法在所有参与调查的贫困户中抽取50户进行深入访谈,问应在支持科技扶贫户数中抽取多少户?

(Ⅱ)虽然五特户在全市的贫困户所占比例不大,但本次调查要有意义,其中这次调查的五特户户数不能低于被调查总户数的9.2%,已知,求本次调查有意义的概率是多少?

【答案】(Ⅰ)16户(Ⅱ)

【解析】

5000户中随机抽取一户支持整村推进的概率为0.36.可求得支持整村推进的户数1800,可知,进而求得,即可求得结果;

)因为,列出所有符合的结果共13,由于五特户户数不能低于被调查总户数的9.2%,,,有意义,找到符合题意的结果即可求出概率.

解:(支持整村推进户数为.

.

应在支持科技扶贫户数中抽取的户数为:(户).

五特户户数不能低于被调查总户数的9.2%

有意义,又情况列举如下:

13种情况.

本次调查有意义的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是(

A.甲、乙、丙三人至少一人选化学与全选化学是对立事件

B.甲的不同的选法种数为15

C.已知乙同学选了物理,乙同学选技术的概率是

D.乙、丙两名同学都选物理的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了垃圾分类,从我做起的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为合格”.

)由以上数据绘制成2×2联表,是否有95%以上的把握认为性别问卷结果有关?

总计

合格

不合格

总计

)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的侧棱垂直于底面,且是棱的中点.

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求的极小值;

2)若对任意的实数a,函数上总有零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案