精英家教网 > 高中数学 > 题目详情
函数f(x)=ln(x+1)-
2
x
的零点所在的区间是(n,n+1),则正整数n=
 
考点:函数零点的判定定理
专题:计算题,作图题,函数的性质及应用
分析:函数f(x)=ln(x+1)-
2
x
的零点即方程ln(x+1)-
2
x
=0的解;再转化为函数y=ln(x+1)与y=
2
x
的图象的交点,从而作图求解.
解答: 解:函数f(x)=ln(x+1)-
2
x
的零点即方程ln(x+1)-
2
x
=0的解;
即方程ln(x+1)=
2
x
的解;
作函数y=ln(x+1)与y=
2
x
的图象如下,
可知交点在(1,2)之间;
故n=1;
故答案为:1.
点评:本题考查了函数的零点与方程的根的关系应用及数形结合的思想应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-b,g(x)=ex(a,b∈R),h(x)为g(x)的反函数.
(Ⅰ)若函数y=f(x)-g(x)在x=1处的切线方程为y=(1-e)x-2,求a,b的值;
(Ⅱ)当b=0时,若不等式f(x)>h(x)恒成立,求a的取值范围;
(Ⅲ)当a=b时,若对任意x0∈(-∞,0],方程f(x)-h(x)=g(x0)在(0,e]上总有两个不等的实根,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1=
1
2
+
1
3
+
1
6
,1=
1
2
+
1
4
+
1
6
+
1
12
,1=
1
2
+
1
5
+
1
6
+
1
12
+
1
20
,…依此类推可得:1=
1
2
+
1
6
+
1
12
+
1
m
+
1
n
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
110
+
1
132
+
1
156
,其中m≤n,m,n∈N*.设1≤x≤m,1≤y≤n,则
x+y+2
x+1
的最小值为(  )
A、
23
2
B、
5
2
C、
8
7
D、
34
3

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量
(1)已知
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2
,若A,B,D三点共线,求k的值
(2)如图,在平行四边形OPQR中,S是对角线的交点,若
OP
=2
e1
OR
=3
e2
,以
e1
e2
为基底表示
PS
QS

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,P三点共线,O为空间不与A,B,P共线的任意一点,
OP
OA
OB
,求实数α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,定义:A(x)表示不大于x的最大整数,如A(
3
)=1,A(-0.4)=-1,A(-1.1)=-2,
(1)试写出A(x)的解析式;
(2)A(2x+1)=3,则实数x的取值范围是
 

(3)求满足条件A2(x)+A2(y)≤1的点(x,y)所构成的平面区域的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3x+x-2的零点所在的一个区间是(  )
A、(1,2)
B、(0,1)
C、(-2,-1)
D、(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

6位同学站在一排照相,按下列要求,各有多少种不同排法?
①甲、乙必须站在排头或排尾
②甲、乙.丙三人相邻
③甲、乙、丙三人互不相邻
④甲不在排头,乙不在排尾
⑤若其中甲不站在左端,也不与乙相邻.

查看答案和解析>>

同步练习册答案