【题目】某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式: .
【答案】
(1)解: =2013, = =260.2,
=(﹣2)×(﹣24.2)+(﹣1)×(﹣14.2)+0+1×15.8+2×25.8=130.
=4+1+0+1+4=10.
∴b= =13,
∴回归方程为y﹣260.2=13(x﹣2013),即y=13(x﹣2013)+260.2.
(2)解:当x=2020时,y=13(2020﹣2013)+260.2=351.2(万吨).
答:该城市2023年的居民生活用水量预计为351.2万吨.
【解析】(1)根据回归系数公式计算回归系数,得出回归方程;(2)由于到2020年用水量趋于稳定,故2023年的用水量约等于2020年的用水量,把x=2020代入回归方程求出用水量的估计值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 .
(1)求动点M的轨迹E的方程;
(2)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中, 平面, , , , , 为的中点.
(Ⅰ)求四棱锥的体积;
(Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度;
(Ⅲ)判断线段上是否存在一点,使得?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格试销,得到一组销售数据,如下表所示:
(已知, ).
(1)求出的值;
(2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个数据中任取2个,求抽取的2个数据中至少有1个是“好数据”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com