精英家教网 > 高中数学 > 题目详情
对于函数f(x)=a-
22x+1
 
(a∈R)
. 
(1)探索函数f(x)的单调性;
(2)是否存在实数a使得f(x)为奇函数.
分析:(1)设x1<x2,化简计算f(x1)-f(x2)的解析式到因式乘积的形式,判断符号,得出结论.
(2))假设存在实数a使f(x)为奇函数,∴f(-x)=-f(x),由此等式解出a的值,若a无解,说明不存在实数a使f(x)为奇函数,若a有解,说明存在实数a使f(x)为奇函数.
解答:解:(1)∵f(x)的定义域为R,设x1<x2
f(x1)-f(x2)=a-
1
2x1+1
-a+
1
2x2+1
=
2x1-2x2
(1+2x1)(1+2x2)
,(3分)
∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0,(5分)
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数.(6分)
(2)假设存在实数a使f(x)为奇函数,∴f(-x)=-f(x)(7分)
a-
2
2-x+1
=-a+
2
2x+1
,(9分)
解得:a=1,故存在实数a使f(x)为奇函数.  (12分)
点评:本题考查函数的奇偶性、单调性的判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=a-
22x+1
(a∈R)

(Ⅰ) 是否存在实数a使函数f(x)为奇函数?
(Ⅱ) 探究函数f(x)的单调性(不用证明),并求出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•山东模拟)对于函数f(x)=a-
22x+1
(a∈R)

(1)用函数单调性的定义证明f(x)在(-∞,+∞)上是增函数;
(2)是否存在实数a使函数f(x)为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a-
2bx+1
 (a∈R,b>0且b≠1)
(1)判断函数的单调性并证明;
(2)是否存在实数a使函数f (x)为奇函数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a-
12x+1
(a∈R):

(1)探究函数f(x)的单调性,并给予证明;
(2)是否存在实数a使函数f(x)为奇函数?
(3)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案