精英家教网 > 高中数学 > 题目详情
等差数列﹛an﹜满足a4=20,a10=8
(I)求数列﹛an﹜的通项公式;
(II)求数列的前n项和Sn,指出当n为多少时Sn取最大值,并求出这个最大值.
分析:(1)设公差等于d,由a10-a4=8-20=6d 求出d的值,再由等差数列的通项公式求出首项,从而得到数列﹛an﹜的通项公式.
(2)令an=0,可得n=14,再由公差 d=-2<0可得,此数列为递减等差数列,第14项等于0,从第15项开始为负数,故当n=13或14时Sn最大,利用等差数列的前n项和公式求出Sn最大值.
解答:解:(1)设公差等于d,∵a4=20,a10=8,∴a10-a4=8-20=6d,∴d=-2.
∴a4=20=a1+3d=a1-6,∴a1=26.
∴an=a1+(n-1)d=26+(n-1)(-2)=28-2n.
 (2)令an=28-2n=0,可得n=14,再由公差 d=-2<0可得,此数列为递减等差数列,第14项等于0,从第15项开始为负数,
故当n=13或14时Sn最大,最大值为
14×(26+0)
2
=182.
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,等差数列的前n项和公式的应用,求出首项和公差d的值,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a
2
n
-1
(n∈N),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.则公差d=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}满足a3=3,a6=-3,则数列{an}的前n项和Sn的最大值为
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}满足:a3=1,a5=4,则a11=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an}满足2a2 +2a12=a72 ,数列{bn}是等比数列,且b7=a7,则b5b9=(  )

查看答案和解析>>

同步练习册答案