精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}满足a7=a6+2a5 , 若存在两项am , an使得 ,则 的最小值为(
A.
B.
C.
D.不存在

【答案】A
【解析】解:∵a7=a6+2a5
∴a5q2=a5q+2a5
∴q2﹣q﹣2=0,
∴q=2,
∵存在两项am , an使得
∴aman=16a12
∴qm+n2=16=24 , 而q=2,
∴m+n﹣2=4,
∴m+n=6,
= (m+n)( )= (5+ )≥ (5+4)= ,当且仅当m=2,n=4时等号成立,
的最小值为
故选:A.
把所给的数列的三项之间的关系,写出用第五项和公比来表示的形式,求出公比的值,整理所给的条件,写出m,n之间的关系,用基本不等式得到最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有

(1)的值;

(2)求证:对任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一坐标系中,的图象关于轴对称;

是奇函数;

的图象关于成中心对称;

的最大值为

的单调增区间:

以上五个判断正确有____________________写上所有正确判断的序号)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在天内每克的销售价格()与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量()与时间()之间的函数关系如下表所示:

5

15

20

30

销售量

35

25

20

10

(1)根据提供的图象,写出该商品每克销售的价格()与时间的函数关系式;

(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;

(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.

(注:日销售金额=每克的销售价格×日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

与圆相切,求的方程;

与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点C是圆C的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱,侧面.

(Ⅰ)若分别是的中点,求证:

(Ⅱ)若三棱柱的各棱长均为2,侧棱与底面所成的角为,问在线段上是否存在一点,使得平面?若存在,求的比值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案