【题目】选修4—4:极坐标与参数方程
在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)求曲线和直线的普通方程;
(Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为?若存在,求出线段CQ的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“超市购物用手机支付与年龄有关”?
(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选3人,这3人中至少有2人是使用手机支付的”,求事件发生的概率?
列联表
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 28 | ||
合计 | 100 |
0.001 | |||||
10.828 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若曲线与直线满足:①与在某点处相切;②曲线在附近位于直线的异侧,则称曲线与直线“切过”.下列曲线和直线中,“切过”的有________.(填写相应的编号)
①与 ②与 ③与
④与 ⑤与
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,“藏粮于地,藏粮于技”.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:
使用有机肥料(千克) | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
产量增加量 (百斤) | 2.1 | 2.9 | 3.5 | 4.2 | 4.8 | 5.6 | 6.2 | 6.7 |
(1)根据表中的数据,试建立关于的线性回归方程(精确到);
(2) 若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:
每天16点前的 销售量(单位:千克) | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
频数 | 10 | 20 | 16 | 16 | 14 | 14 | 10 |
若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?
附:回归直线方程中的斜率和截距的最小二乘估计公式分别为: ,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如下四个命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于,表示回归效果越好;②在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于;④对分类变量与,对它们的随机变量的观测值来说,越小,则“与有关系”的把握程度越大.其中正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com