精英家教网 > 高中数学 > 题目详情
在△ABC中,分别根据下列条件解三角形,其中有两解的是(  )
分析:由a,b及sinA的值,利用正弦定理分别求出各选项中sinB的值,由B为三角形的内角,得到B的范围,可得出选项A,B及C只有一解,而选项D根据三角形中大边对大角得到满足题意的B有两解,得到正确的选项.
解答:解:A、∵a=7,b=14,A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
14×
1
2
7
=1,
又A为三角形的内角,
∴A=90°,
故只有一解,本选项不合题意;
B、∵a=30,b=25,A=150°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
25×sin150°
30
=
5
12

又A为钝角,∴B为锐角,
故B的度数只有一解,本选项不合题意;
C、∵a=72,b=50,A=135°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
50×sin135°
72
=
25
2
72

又A为钝角,∴B为锐角,
故B的度数只有一解,本选项不合题意;
D、∵a=30,b=40,A=26°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
40sin26°
30
=
4sin26°
3

∵a<b,∴A<B,即26°<B<180°,
则满足题意的B有两解,本选项符合题意,
故选D
点评:此题属于解三角形的题型,涉及的知识有:正弦定理,三角形的边角关系,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若A=60°,b、c分别是方程x2-7x+11=0的两个根,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c(b≠1),且
sinB
sinA
C
A
都是方程log
b
x=logb(4x-4)
的根,求角A、B、C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:①命题“?α∈R,sin3α=sin2α”的否定是假命题;②在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③设二次函数f(x)=x2+ax+a,则“0<a<3-2
2
”是“方程f(x)-x=0的两根x1和x2满足0<x1<x2<1”的充分必要条件.④过点(
1
2
,1)且与函数y=
1
x
的图象相切的直线方程是4x+y-3=0.其中所有正确说法的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a,b,c,若关于x的方程x2-2xsin
C
2
+sin2C=0
有等根
(1)求角C;
(2)若a2+2b2=c2,求
bsinA
c

查看答案和解析>>

同步练习册答案