精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是棱PB的中点.求证:AE⊥平面PBC.

分析 由PA⊥底面ABCD,得PA⊥AB.又PA=AB,从而AE⊥PB.由三垂线定理得BC⊥PB,从而BC⊥平面PAB,由此能证明AE⊥平面PBC.

解答 证明:如图,由PA⊥底面ABCD,
得PA⊥AB.又PA=AB,故△PAB为等腰直角三角形,
而点E是棱PB的中点,所以AE⊥PB.
由题意知BC⊥AB,又AB是PB在面ABCD内的射影,
由三垂线定理得BC⊥PB,从而BC⊥平面PAB,
故BC⊥AE.因为AE⊥PB,AE⊥BC,所以AE⊥平面PBC.

点评 本题主要考查了直线与平面垂直的证明,考查了空间想象能力和推理论证能力,解题时要认真审题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知P=$\frac{1}{{a}^{2}+a+1}$,Q=a2-a+1,则P、Q的大小关系为(  )
A.P>QB.P<QC.P≤QD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\frac{4}{x-2}$(x∈[3,6])的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a∈R,则“a=-1”是“直线l1:ax+2y-1=0与直线l2:x+(a-1)y-4=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若log2(ax2-2x+2)>2在x∈[1,2]上恒成立,则实数a的取值范围为(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{tan(π+α)cos(π+α)si{n}^{2}(3π+α)}{ta{n}^{2}α•co{s}^{3}(-π-α)}$=-sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=(x+a)lnx-ax+1
(1)a=0时,求f(x)的单调区间;
(2)若a≥1,对任意的x∈[$\frac{1}{2}$,1],求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:
(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆C的圆心为(-2,1),半径为为3,则圆C的方程式(  )
A.(x-2)2+(y+1)2=3B.(x-2)2+(y+1)2=9C.(x+2)2+(y-1)2=3D.(x+2)2+(y-1)2=9

查看答案和解析>>

同步练习册答案