精英家教网 > 高中数学 > 题目详情

【题目】一张坐标纸上涂着圆E 及点P(1,0),折叠此纸片,使P与圆周上某点P'重合,每次折叠都会留下折痕,设折痕与直线EP'交于点M
(1)求 的轨迹 的方程;
(2)直线 C的两个不同交点为AB , 且l与以EP为直径的圆相切,若 ,求△ABO的面积的取值范围.

【答案】
(1)解:折痕为PP′的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为2
∴|ME|+|MP|=|ME|+|MP′|=2 >|EP|,
E的轨迹是以EP为焦点的椭圆,且a= c=1,
b2=a2c2=1, ∴M的轨迹C的方程为
(2)解:l与以EP为直径的圆x2+y2=1相切,
Ol即直线AB的距离: =1,即m2=k2+1,
,消去y , 得(1+2k2x2+4kmx+2m2﹣2=0,
∵直线l与椭圆交于两个不同点,
∴△=16k2m2﹣8(1+2k2)(m2﹣1)=8k2>0,k2>0,
Ax1y1),Bx2y2),则
y1y2=(kx1+m)(kx2+m)=k2x1x2+kmx1+x2)+m2=
=x1x2+y1y2= ,∴ ,∴

= =
μ=k4+k2 , 则 ,∴ =
SAOB关于μ在[ ,2]单调递增,
,∴△AOB的面积的取值范围是[ ]
【解析】本题主要考查圆锥曲线的综合应用和平面向量的数量积的问题。第一小题主要考查圆锥曲线的轨迹方程的问题,根据已知条件中的垂直平分线,根据垂直平分线的特点,可以得到动点到两定点的和为定值,可以得出轨迹为椭圆,根据椭圆的特点确定a,b,c即可。第二小题主要考查直线与圆锥曲线的综合应用的问题,要求三角形的面积,就要先找到底和高,由已知条件可知,高是确定的1,所以求底也就是要求弦长的问题,也就要联立直线和椭圆方程,然后利用韦达定理和向量的数量积进行求解弦长AB即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在菱形 中, ⊥平面 ,且四边形 是平行四边形.

(1)求证:
(2)当点 的什么位置时,使得 ∥平面 ,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120 km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有( )

A.30辆
B.1700辆
C.170辆
D.300辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线 的焦点,斜率为 的直线交抛物线于 )两点,且 .
(1)求该抛物线的方程;
(2) 为坐标原点, 为抛物线上一点,若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, ,且 .

(1)证明:平面 ⊥平面
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且a2=3b2+3c2﹣2 bcsinA,则C的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季,甲、乙两名篮球运动员都参加了场比赛,比赛得分情况如下(单位:分)

甲:

乙:

(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;

(2)设甲篮球运动员场比赛得分平均值,将场比赛得分依次输入如图所示的程序框图进行运算,问输出的大小为多少?并说明的统计学意义;

(3)如果从甲、乙两位运动员的场得分中,各随机抽取一场不少于分的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知具有较好的线性关系.

1关于的线性回归方程;

2分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.

:回归直线的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1) 证明:数列是等比数列;

(2) 求使不等式成立的所有正整数m、n的值;

(3) 如果常数0 < t < 3,对于任意的正整数k,都有成立,求t的取值范围.

查看答案和解析>>

同步练习册答案