精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,?BAC=90?.

(1)求证:⊥平面

(2)求二面角的余弦值;

(3)求三棱锥的体积.

 

(2) (3)8

【解析】

试题分析:

(1)(2)(3)均可利用坐标法,即分别以建立三维空间坐标系.下面重点分析法2

(1)利用勾股定理可以求的线段的长,而要证明,只需要证明,首先可以三次利用勾股定理把的三条边长求出,再利用勾股定理证明,线段为等腰直角三角形ABC的三线合一即有,可得到,进而得到,即可通过线线垂直证明面DAE.

(2)要求二面角的余弦值,需要作出该二面角的平面角,为此过D做DM⊥AE于点M,连接B1M.,根据第一问有面AED且可以得到,则即为所求二面角的平面角,即该角的余弦值为.利用勾股定理即可得到的长,进而得到二面角的余弦值.

(3)由(1)可得,则该三棱锥可以以作为底面,高为来求的体积,而AD和三角形的面积都可以用勾股定理求的.

试题解析:

法1:依题意,建立如图所示的空间直角坐标系A-xyz.因为=4,所以A(0,0,0),B(4,0,0),E(0,4,2),D(2,2,0),B1(4,0,4). (1分)

(1). (2分)

因为,所以,即. (3分)

因为,所以,即. (4分)

又AD、AE?平面AED,且AD∩AE=A,故⊥平面. (5分)

(2)由(1)知为平面AED的一个法向量. (6分)

设平面 B1AE的法向量为,因为

所以由,得,令y=1,得x=2,z=-2.即.(7分)

, (8分)

∴二面角的余弦值为. (9分)

(3)由,得,所以AD⊥DE. (10分)

,得. (11分)

由(1)得B1D为三棱锥B1-ADE的高,且, (12分)

所以. (13分)

法2:依题意得,平面ABC,

.

(1)∵,D为BC的中点,∴AD⊥BC.

∵B1B⊥平面ABC,AD?平面ABC,∴AD⊥B1B.

BC、B1B?平面B1BCC1,且BC∩B1B=B,所以AD⊥平面B1BCC1.

又B1D?平面B1BCC1,故B1D⊥AD . (2分)

,所以. (4分)

又AD、DE?平面AED,且AD∩DE=E,故⊥平面. (5分)

(2)过D做DM⊥AE于点M,连接B1M.

由B1D⊥平面AED,AE?平面AED,得AE ⊥B1D.

又B1D、DM?平面B1DM,且B1D∩DM=D,故AE⊥平面B1DM.

因为B1M?平面B1DM,所以B1M⊥AE.

故∠B1MD为二面角B1—AE—D的平面角. (7分)

由(1)得,AD⊥平面B1BCC1,又DE?平面B1BCC1,所以AD⊥DE.

在Rt△AED中,, (8分)

在Rt△B1DM中,

所以,即二面角B1—AE—D的余弦值为. (9分)

(3)由(1)得,AD⊥平面B1BCC1,

所以AD为三棱锥A-B1DE的高,且. (10分)

由(1)得. (11分)

. (13分)

考点:勾股定理 坐标法 线面垂直 三棱锥体积

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.

(1)若PM=PA,求证:MN⊥AD;

(2)若二面角M-BD-A的大小为,求线段MN的长度.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)理科数学试卷(解析版) 题型:选择题

执行如图所示的程序框图,若输出的结果是,则判断框内的条件(  )

A.? B.? C.? D.?

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)文科数学试卷(解析版) 题型:选择题

给出如下四个判断:

③设是实数,的充要条件 ;

④命题“若”的逆否命题是若,则.

其中正确的判断个数是:

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)文科数学试卷(解析版) 题型:选择题

是虚数单位,则复数在复平面内对应的点在(  )

A.第一象限 B.第二象限

C.第三象限D.第四象限

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟理科数学试卷(解析版) 题型:填空题

已知集合A={4},B={1,2},C={1,3,5},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数为 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟理科数学试卷(解析版) 题型:选择题

若如图所示的程序框图输出的S是30,则在判断框中M表示的“条件”应该是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟文科数学试卷(解析版) 题型:选择题

设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则在区间上的最大值是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二文科数学试卷(解析版) 题型:填空题

为偶函数,则实数_______.

 

查看答案和解析>>

同步练习册答案