精英家教网 > 高中数学 > 题目详情
7.y=$\frac{2{x}^{2}+2x+5}{{x}^{2}+x+1}$的最大值是6.

分析 分离常数法化简y=$\frac{2{x}^{2}+2x+5}{{x}^{2}+x+1}$=2+$\frac{3}{{x}^{2}+x+1}$,再用配方法化简y=2+$\frac{3}{(x+\frac{1}{2})^{2}+\frac{3}{4}}$,从而求最大值.

解答 解:y=$\frac{2{x}^{2}+2x+5}{{x}^{2}+x+1}$
=2+$\frac{3}{{x}^{2}+x+1}$
=2+$\frac{3}{(x+\frac{1}{2})^{2}+\frac{3}{4}}$,
∵$(x+\frac{1}{2})^{2}$≥0,
∴$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$≥$\frac{3}{4}$,
∴$\frac{3}{(x+\frac{1}{2})^{2}+\frac{3}{4}}$≤4,
∴2+$\frac{3}{(x+\frac{1}{2})^{2}+\frac{3}{4}}$≤6,
故答案为:6.

点评 本题考查了分离常数法与配方法在求函数的最值时的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设f(x)是R上的奇函数,当x>0时,f(x)=2x+ln$\frac{x}{4}$,记an=f(n-5),则数列{an}的前8项和为-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ln(ex)}{x}$,g(x)=$\frac{3}{8}$x2-2x+1+xf(x).
(1)证明f(x)≤1在其定义域内恒成立;
(2)若函数y=g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一系列函数的解析式和值域相同,但是定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]为“同族函数”.下面函数解析式中能够被用来构造“同族函数”的是①②④.(填序号)
①y=$\frac{1}{{x}^{2}}$;②y=|x|;③y=$\frac{1}{x}$;④y=x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集为R,集合M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},则韦恩图中阴影部分表示的集合为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点M(-2,0)的直线l与圆x2+y2=1交于A、B两点,则线段AB的中点P的轨迹的长度为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=2y的焦点为F,P为抛物线C上任意一点,点M(-2,4m-2m+4),m∈R,则|MP|+|PF|的最小值为(  )
A.$\frac{5}{2}$B.$\frac{13}{4}$C.$\frac{9}{2}$D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l1:2x-y+3=0,l2:4x+8y+3=0的位置关系为(  )
A.相交不垂直B.垂直C.平行不重合D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x+1,g(x)=2x4-18x2+12x+68.
(1)如果不等式f(x)≥ax2+a对任意的x∈R恒成立,求实数a的取值范围;
(2)是否存在正实数M,使得不等式f(x)+$\sqrt{g(x)}$≥M对任意的x∈R恒成立,求出M的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案