精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为.

1)把曲线C1的方程化为普通方程,C2的方程化为直角坐标方程;

2)若曲线C1C2相交于AB两点,AB的中点为P,过点P做曲线C2的垂线交曲线C1EF两点,求|PE||PF|.

【答案】1y24xxy10216

【解析】

1)曲线C1消去参数即可得出普通方程,曲线C2利用即可化直角坐标方程;

2)设Ax1y1),Bx2y2),且中点为Px0y0),联立抛物线与直线的方程,利用根与系数的关系、中点坐标公式可得x03y02,进而得到线段AB的中垂线的参数方程为t为参数),代入抛物线方程,利用参数的意义即可得出.

1)曲线C1的参数方程为(其中t为参数),消去参数可得y24x.

曲线C2的极坐标方程为.展开为ρcosθρsinθ,化为xy10.

2)设Ax1y1),Bx2y2),且中点为Px0y0),

联立,解得x26x+10

x1+x26x1x21.

x03y02.

线段AB的中垂线的参数方程为为t为参数),

代入y24x,可得t2+8t160

t1t2=﹣16

|PE||PF||t1t2|16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,抛物线处的切线交轴于点,过点作直线与抛物线交于不同的两点,直线分别与抛物线的准线交于点,其中为坐标原点.

)求抛物线的方程及其准线方程,并求出点的坐标;

)求证:为线段的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线E的方程为x22pyp0),其焦点为F,过点M 04)的直线与抛物线相交于PQ两点且OPQ为以O为直角顶点的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)设点N为曲线E上的任意一点,证明:以FN为直径的圆与x轴相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为F1F2,过点F1作圆x2+y2a2的切线交双曲线右支于点M,若tanF1MF22,又e为双曲线的离心率,则e2的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.

1)点Mxy)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;

2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为EF,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,曲线上任意一点到的距离等于该点到直线的距离.

(Ⅰ)求及曲线的方程;

(Ⅱ)若直线与椭圆只有一个交点,与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为等边三角形,的中点.

1)求证:平面平面

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是平行四边形,PDABOAD的中点,BOCO.

(1)求证:AB⊥平面PAD

(2)若AD2AB=4, PAPD,点M在侧棱PD上,且PD3MD,二面角PBCD的大小为,求直线BP与平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面是边长为2的正三角形,底面,点分别为的中点.

1)求证:平面平面

2)在线段上是否存在点,使得直线与平面所成的角的余弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案