A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 在①中,当b=c=0时,a,b,c不成等比数列;在②中,$\frac{{c}^{{a}_{n+1}}}{{c}^{{a}_{n}}}$=$\frac{{c}^{{a}_{n}+d}}{{c}^{{a}_{n}}}$=cd,数列{can}为等比数列;在③中,$\frac{{c}^{{a}_{n+1}}}{{c}^{{a}_{n}}}$=$\frac{{c}^{{a}_{n}q}}{{c}^{{a}_{n}}}$${c}^{{a}_{n}q-{a}_{n}}$不是常数,数列{can}不为等比数列;在④中,由0构成的常数列为等差数列,不是等比数列.
解答 解:在①中,b2=ac,当b=c=0时,a,b,c不成等比数列,故①错误;
②若{an}为等差数列,且常数c>0,则$\frac{{c}^{{a}_{n+1}}}{{c}^{{a}_{n}}}$=$\frac{{c}^{{a}_{n}+d}}{{c}^{{a}_{n}}}$=cd,
∴数列{can}为等比数列,故②正确;
③若{an}为等比数列,且常数c>0,则$\frac{{c}^{{a}_{n+1}}}{{c}^{{a}_{n}}}$=$\frac{{c}^{{a}_{n}q}}{{c}^{{a}_{n}}}$${c}^{{a}_{n}q-{a}_{n}}$不是常数,
∴等比数列的性质得数列{can}不为等比数列,故③错误;
④由0构成的常数列为等差数列,不是等比数列,故④错误.
故选:A.
点评 本题考查命题真假的判断,是基础题,解题时要注意等差数列和等比数列的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 关于原点对称 | B. | 关于直线y=x对称 | C. | 关于x轴对称 | D. | 关于y轴对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 周期为π的奇函数 | B. | 周期为$\frac{π}{2}$的奇函数 | ||
C. | 周期为π的偶函数 | D. | 周期为$\frac{π}{2}$的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (1,+∞) | D. | $({-∞,\frac{1}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1-\sqrt{3}}{2}$ | B. | 1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com