精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).
(1)若 ,求c的值;
(2)若c=5,求sinA的值.

【答案】
(1)解:由A(3,4)、B(0,0)、C(c,0).

得到: =(﹣3,﹣4), =(c﹣3,﹣4),则 =﹣3(c﹣3)+16=0,解得c=


(2)解:当c=5时,C(5,0),则|AB|= =5,|AC|= =2 ,|BC|=5,

根据余弦定理得:cosA= = =

由A∈(0,π),得到sinA= =


【解析】(1)根据已知三点的坐标分别表示出 ,然后利用平面向量数量积的运算法则,根据 列出关于c的方程,求出方程的解即可得到c的值;(2)把c的值代入C的坐标即可确定出C,然后利用两点间的距离公式分别求出|AB|、|AC|及|BC|的长度,由|AB|、|AC|及|BC|的长度,利用余弦定理即可求出cosA的值,然后由A的范围,利用同角三角函数间的基本关系即可求出sinA的值.
【考点精析】利用余弦定理的定义对题目进行判断即可得到答案,需要熟知余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单凋性;

(2)若存在使得对任意的不等式(其中e为自然对数的底数)都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△AOB中,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,△AOC为钝角三角形的概率是(
A.0.2
B.0.4
C.0.6
D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.

(1)求数列{an}、{bn}的通项公式;

(2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贵阳市创建全国文明城市工作验收时国家文明委有关部门对高二年级6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为(  )

A. B. C. D..

查看答案和解析>>

同步练习册答案