精英家教网 > 高中数学 > 题目详情
5.不等式:2x+$\frac{1}{x}$≥-3的解集是{x|x>0或-1≤x≤$-\frac{1}{2}$}.

分析 根据分式不等式的解法进行求解即可.

解答 解:若x>0,则不等式等价为2x2+1≥-3x,即2x2+3x+1≥0,解得x≥$-\frac{1}{2}$或x≤-1,∵x>0,∴此时x>0,
若x<0,则不等式等价为2x2+1≤-3x,即2x2+3x+1≤0,解得-1≤x≤$-\frac{1}{2}$,∵x<0,∴此时-1≤x≤$-\frac{1}{2}$,
综上不等式的解为x>0或-1≤x≤$-\frac{1}{2}$,
即不等式的解集为{x|x>0或-1≤x≤$-\frac{1}{2}$},
故答案为:{x|x>0或-1≤x≤$-\frac{1}{2}$}

点评 本题主要考查不等式的求解,利用分式不等式的解法,讨论x>0和x<0是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.对某商店一个月内每天的顾客人数进行统计,得到数据如下:12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,则该样本的中位数,众数,极差分别为(  )
A.46、45、56B.46、45、53C.47、45、56D.45、47、53

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=3,$\overrightarrow{CB}$=3$\overrightarrow{BF}$,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列运用基本不等式求最值,使用正确的个数是(  )
①已知ab≠0,由$\frac{a}{b}$+$\frac{b}{a}$≥2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=2,求得$\frac{a}{b}$+$\frac{b}{a}$的最小值为2
②由y=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2,求得y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值为2
③已知x>1,由y=x+$\frac{2}{x-1}$≥2$\sqrt{\frac{2x}{x-1}}$,当且仅当x=$\frac{2}{x-1}$即x=2时等号成立,把x=2代入2$\sqrt{\frac{2x}{x-1}}$得y的最小值为4.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的单调递减函数,则实数a的取值范围是(  )
A.(-∞,2)B.$(-∞,\frac{1}{2}]$C.$[\frac{1}{2},2)$D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的逆命题是“若a2+b2+c2≥3,则a+b+c=3”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校高二年级有1200人,从中抽取100名学生,对其期中考试语文成绩进行统计分析,得到如图所示的频率分布直方图,其中成绩分组区间是:[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(Ⅰ)求图中a的值并估计语文成绩的众数;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(Ⅲ) 根据频率分布直方图,估计该校这1200名学生中成绩在60分(含60分)以上的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,作$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,则∠AOB=30°.(用角度表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=-$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+2,求:
(1)f(x)的最小正周期及对称轴方程;
(2)f(x)的单调递增区间;
(3)若方程f(x)-m+1=0在x∈[0,$\frac{π}{2}$]上有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案