精英家教网 > 高中数学 > 题目详情

【题目】已知数列各项均为正数,为其前项的和,且成等差数列.

1)写出的值,并猜想数列的通项公式

2)证明(1)中的猜想;

3)设为数列的前项和.若对于任意,都有,求实数的值.

【答案】(1);(2)详见解析;(3).

【解析】

1)代入,求出,猜想出即可;

2)利用等差数列的定义证明即可;

3)由(2)知,因为都是整数,所以对于任意都是整数,进而是整数,所以,此时,因为的任意性,不妨设,求出即可.

1)解:由已知

所以

猜想

证明(2)当时,

所以

因为,所以

数列为等差数列,又由(1

所以

3)解由(2)知.

,则

因为都是整数,所以对于任意都是整数,进而是整数

所以,此时

,则,所以2

①当时,对于任意

②当时,对于任意

所以实数取值的集合为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种新产品,从产品中抽取100件作为样本,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图.

1)用每组区间的中点值代表该组数据,估算这批产品的样本平均数和样本方差的

2)从指标值落在的产品中随机抽取2件做进一步检测,设抽取的产品的指标在的件数为,求的分布列和数学期望;

3)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布近似为样本平均值近似为样本方差,若产品质量指标值大于236.6,则产品不合格,该厂生产10万件该产品,求这批产品不合格的件数.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已双曲线的一条渐近线与椭圆C)在第一象限的交点为P为椭圆C的左、右焦点,若,则椭圆C的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆的左顶点斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.

1)求椭圆的离心率;

2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形ABCD中,EAD的中点.现分别沿BEECABE ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,连接AD,如图2.

(1)若在平面BCE内存在点G,使得GD∥平面ABE,请问点G的轨迹是什么图形?并说明理由.

(2)求平面AED与平面BCE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a R a0,函数 f (x) eax1 ax ,其中常数e .

1)求 f (x) 的最小值;

2)当a 1时,求证:对任意 x0 ,都有 xf (x) 2ln x 1 ax2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),若存在x,使得f(x)<2,则实数a的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场为了提高某品种水稻的产量,进行良种优选,在同一试验田中分两块种植了甲乙两种水稻.为了比较甲乙两种水稻的产量,现从甲乙两种水稻中各随机选取20株成熟水稻.根据每株水稻颗粒的重量(单位:克)绘制了如下茎叶图:

1)根据茎叶图判断哪种水稻的产量更高?并说明理由;

2)求40株水稻颗粒重量的中位数,并将重量超过和不超过的水稻株数填入下面的列联表:

超过

不超过

甲种水稻

乙种水稻

3)根据(2)中的列联表,能否有的把握认为两种水稻的产量有差异?:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案