精英家教网 > 高中数学 > 题目详情

【题目】在平面四边形中(图1),的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.

1)求证:平面//平面

2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.

【答案】(1)证明见解析;(2)存在,且

【解析】

1)利用面面平行的判定定理,证明平面//平面.

2)建立空间直角坐标系,设出点坐标,利用平面与平面所成二面角的余弦值为列方程,解方程求得的坐标,由此判断符合题意的点存在,以及求得的长.

1)由于分别为的中点,所以由线面平行的判定定理可得//平面.可得//平面,而直线与直线相交,由面面平行的判定定理得平面//平面.

2)因为二面角为直二面角,又,所以,由此建立如图所示的空间直角坐标系.,则,设平面的法向量为,则,取.

,则,设平面的法向量为,则,取.由平面与平面所成二面角的余弦值为,解得,所以.所以存在点,使得平面与平面所成二面角的余弦值为,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,对一切,点都在函数的图像上.

(1)证明:当时,;

(2)求数列的通项公式;

(3)设为数列的前n项的积,若不等式对一切成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为为坐标原点.

设直线的斜率为,证明:

问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当a=2,求函数的极值;

(2)若函数有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点分别为椭圆的左右顶点,直线于点是等腰直角三角形,且

(1)求的方程;

(2)设过点的动直线相交于两点,为坐标原点.当为直角时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应市政府提出的以新旧动能转换为主题的发展战略,某公司花费100万元成本购买了1套新设备用于扩大生产,预计该设备每年收入100万元,第一年该设备的各种消耗成本为8万元,且从第二年开始每年比上一年消耗成本增加8万元.

1)求该设备使用x年的总利润y(万元)与使用年数xxN*)的函数关系式(总利润=总收入﹣总成本);

2)这套设备使用多少年,可使年平均利润最大?并求出年平均利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在几何体中,是等边三角形,平面,且.

(I)试在线段上确定点的位置,使平面,并证明;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求使方程存在两个实数解时,的取值范围;

2)设,函数.若对任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

同步练习册答案