精英家教网 > 高中数学 > 题目详情
(2011•武昌区模拟)圆柱型金属饮料罐的容积V一定时,它的高h与底面半径R具有怎样的关系时,才能使所用材料最省?
分析:由题意求出饮料罐的表面积,求出体积,推出表面积与圆柱底面半径的关系式,通过不等式求出面积的最小值.
解答:(本小题满分12分)
解:如图,饮料罐的表面积S=2πRh+2πR2.…(2分)
由V=πR2h,得h=
V
πR2
,则
S=2πR•
V
πR2
+2πR2
=
2V
R 
+2πR2
.(R>0)…(4分)
所以S=
V
R
+
V
R
+2πR2
≥3
3
V
R
V
R
•2πR2
=3
3V2

当且仅当
V
R
=2πR2
,即R=
3
V
时,S取得最小值.…(10分)
R=
3
V
代入h=
V
πR2
,得h=2
3
V
,即h=2R.…(11分)
答:当饮料罐的高与底面的直径相等时,所用材料最省. …(12分)
点评:本题是中档题,考查圆柱的表面积与体积的关系,不等式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(3x)=3f(x)成立;(2)当x∈(1,3]时,f(x)=3-x.给出如下结论:
①对任意m∈Z,有f(3m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(3n+1)=9.
其中所有正确结论的序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知点P(x,y)与点A(-
2
,0),B(
2
,0)
连线的斜率之积为1,点C的坐标为(1,0).
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点Q(2,0)的直线与点P的轨迹交于E、F两点,求证
CE
CF
为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)设集合M={y|y=(
1
2
)
x
,x≥0},N={y|y=lg x,0<x≤1}
,则集合M∪N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)过三棱柱任意两个顶点作直线,在所有这些直线中任取其中两条,则它们成为异面直线的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武昌区模拟)已知一次函数f(x)=kx+b(k,b∈R),若-1<f(1)<4,2<f(-1)<3,则2f(-
3
2
)
的取值范围是
(3,
17
2
(3,
17
2

查看答案和解析>>

同步练习册答案