精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3+3x2﹣9x+m
(1)求函数f(x)=x3+3x2﹣9x+m的单调递增区间;
(2)若函数f(x)在区间[0,2]上的最大值12,求函数f(x)在该区间上的最小值.

【答案】
(1)解:f′(x)=3x2+6x﹣9=3(x+3)(x﹣1),

令f′(x)>0,得x>1或x<﹣3;

令f′(x)<0,得﹣3<x<1.

∴函数f(x)的增区间为:(﹣∞,﹣3),(1,+∞)


(2)解:由(1)知,f′(x)=3x2+6x﹣9=3(x+3)(x﹣1),

令f′(x)=0,得x=1或x=﹣3(舍).

当x在闭区间[0,2]变化时,f′(x),f(x)变化情况如下表

x

0

(0,1)

1

(1,2)

2

f′(x)

0

+

f(x)

m

单调递减

m﹣5

单调递增

2+m

∴当x=2时,f(x)取最大值f(x)max=f(2)=m+2,由已知m+2=12,得m=10.

当x=1时,f(x)取最小值f(x)min=f(1)=m﹣5=5


【解析】(1)求出函数的导函数,直接由导函数大于0求解不等式得答案;(2)由(1)可得f(x)在(0,2)上的单调性,求得极值,再求出f(0)、f(2)比较得答案.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为直线x﹣y+1=0和2x+y+2=0的交点,一条边所在的直线方程是x+3y﹣5=0,求其他三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某离散型随机变量X服从的分布列如图,则随机变量X的方差D(X)等于

X

0

1

p

m

2m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数).

(1)当时,求的最大值;

(2)当时,恒成立,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值10.

1)求实数的值;

2)设,讨论函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数中,在(0,1)上为增函数的是(
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列结论中不正确的是( )

A. 的图象关于点中心对称

B. 的图象关于直线对称

C. 的最大值为

D. 既是奇函数,又是周期函数

查看答案和解析>>

同步练习册答案