精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知向量
m
=(2b-c,cosC),
n
=(a,cosA),且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)求cosB+cosC的取值范围.
分析:(Ⅰ)根据平面向量平行时满足的条件得到一个关系式,根据正弦定理及两角和的正弦函数公式化简后,即可得到cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的度数;
(Ⅱ)由(Ⅰ)求出的A的度数,利用三角形的内角和定理得到B+C的度数,用C表示出B,代入cosB+cosC,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的度数和三角形为锐角三角形,即可得到B的范围,进而得到这个角的取值范围,根据正弦函数的值域即可得到cosB+cosC的取值范围.
解答:解:(Ⅰ)因为
m
n
,所以(2b-c)cosA-acosC=0,
由正弦定理可得:2cosAsinB=cosAsinC+sinAcosC,
即2cosAsinB=sin(A+C),∴cosA=
1
2

∵0<A<π,∴A=
π
3

(Ⅱ)由(Ⅰ)知:B+C=
3

所以cosB+cosC=cosB+cos(
3
-B)=cosB-cos(
π
3
-B)=cosB-
1
2
cosB+
3
2
sinB=sin(B+
π
6
),
∵A=
π
3
且△ABC为锐角三角形,∴
π
6
<B<
π
2
,即
π
3
<B+
π
6
3

3
2
<sin(B+
π
6
)≤1,所以cosB+cosC的取值范围是(
3
2
,1]
点评:此题考查学生灵活运用正弦定理及两角和的正弦函数公式化简求值,灵活运用诱导公式及特殊角的三角函数值化简求值,掌握平面向量平行时满足的条件,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC=
aba2+b2-c2

(Ⅰ)求角C大小;
(Ⅱ)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•张掖模拟)在锐角△ABC中,角A、B、C所对的边分别为a、b、c.且
a-c
b-c
=
sinB
sinA+sinC

(1)求角A的大小及角B的取值范围;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2sin
x
2
,-1),
OQ
=(cosx+f(x),sin(
π
2
-
x
2
)),且
OP
OQ

(1)求函数f(x)的表达式,并指出f(x)的单调递减区间;
(2)在锐角△ABC中,角A、B、C所对的边分别为a,b,c,且f(A)=-
2
,bc=8
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知b2=ac且sinAsinC=
34

(Ⅰ)求角B的大小.
(Ⅱ)求函数f(x)=sin(x-B)+sinx(0≤x<π)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-
3
4

(Ⅰ)求sinC;
(Ⅱ)当c=2a,且b=3
7
时,求a及△ABC的面积.

查看答案和解析>>

同步练习册答案