精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2的图象在P(a,-a2)(a≠0)处的切线与两坐标轴所围成的三角形的面积为2,则实数a的值为(  )
分析:根据曲线的解析式求出导函数,把x=a代入导函数中即可求出切线的斜率,根据切点的坐标和求出的斜率写出切线的方程,进而求出切线l与两坐标轴的交点坐标,即可求出切线l与两坐标轴所围成的三角形的面积,从而建立关于a的方程即可求出a值.
解答:解:依题意得,f'(x)=-2x
∴f'(a)=-2a,
∴切线斜率为-2a,
∴切线方程为:y+a2=-2a(x-a),
在切线方程中,当x=0时,y=a2
当y=0时,x=
a
2

∴切线与x,y轴的交点坐标分别为:(
a
2
,0),(0,a2).
∴该切线与坐标轴所围成的三角形面积为:
1
2
×
a
2
×a2=2,
解得a=±2.
故选C.
点评:此题考查学生会利用导数研究曲线上某点的切线方程,是一道综合题.学生在解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”;同时解决“过某点的切线”问题,一般是设出切点坐标解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案