精英家教网 > 高中数学 > 题目详情
4.设f(x)=3x,g(x)=($\frac{1}{3}$)x
(1)在同一坐标系中作出f(x),g(x)的图象.
(2)计算f(1)与g(-1),f(π)与g(-π),f(m)与g(-m)的值,从中你能得到什么结论?

分析 (1)结合指数函数的图象,利用描点法作f(x),g(x)的图象.
(2)可求得f(1)=3,g(-1)=3;f(π)=3π,g(-π)=3π;f(m)=3m,g(-m)=3m;从而可判断f(x)=g(-x).

解答 解:(1)作f(x),g(x)的图象如下,

(2)f(1)=3,g(-1)=3;
f(π)=3π,g(-π)=3π
f(m)=3m,g(-m)=3m
故f(x)=g(-x);
即f(x)与g(x)的图象关于y轴对称.

点评 本题考查了指数函数的图象的作法及由图象发现函数的性质的方法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知m≥1,n≥1,且满足$lo{{g}_{a}}^{2}$m+$lo{{g}_{a}}^{2}$n=loga(am2)+loga(an2)(a>1),求loga(mn)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,且满足an+Sn=$\frac{1}{2}$(n2+3n),数列{bn}满足bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,数列{bn}的前n项和为Tn,M为正整数.
(1)求数列{an}的通项公式an
(2)若数列{bn}的前2015项的和T2015≥M,求M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三个数a-1,a+1,a+5成等比数列,其倒数重新排列后恰好为递增的等比数列{an}的前三项,则能使不等式a1+a2+…+an≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$成立的自然数n的最大值为(  )
A.5B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin(π+α)=-$\frac{3}{5}$,求$\frac{sin(3π+α)tan(2π+α)cos(5π+α)}{tan(π+α)tan(3π+α)sin(2π+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x∈N|$\frac{x-2}{x}$≤0},B={x∈Z|$\sqrt{x}$≤2},则满足条件A⊆C?B的集合C的个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算($lg\frac{1}{5}-lg2$)÷100${\;}^{-\frac{1}{2}}$+${({\frac{1}{3}})^{{{log}_3}\frac{1}{10}}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定义域是R,则实数a的取值范围是(  )
A.$({0,\frac{4}{9}})$B.$[{0,\frac{4}{9}}]$C.$[{0,\frac{4}{9}})$D.$({0,\frac{4}{9}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图直三棱柱ABC-A′B′C′的侧棱长为3,AB⊥BC,且AB=BC=3,点E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:无论E在何处,总有CB′⊥C′E;
(2)当三棱锥B-EB′F的体积取得最大值时,求AE的长度.
(3)在(2)的条件下,求异面直线A′F与AC所成角.

查看答案和解析>>

同步练习册答案