精英家教网 > 高中数学 > 题目详情

【题目】某市从高二年级随机选取1000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,空白表示未选.

科目

方案 人数

物理

化学

生物

政治

历史

地理

220

200

180

175

135

90

(Ⅰ)在这1000名学生中,从选修物理的学生中随机选取1人,求该学生选修政治的概率;

(Ⅱ)在这1000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外另外两门选课中有相同科目的概率;

(Ⅲ)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)该市选课偏理的学生人数多

【解析】

(Ⅰ)根据古典概型公式求解;(Ⅱ)列出所有的情况,根据古典概型公式求解;(Ⅲ)根据样本频率估计概率判断.

(Ⅰ)设事件 为“在这名学生中,

从选修物理的学生中随机选取1人,该学生选修政治”.

在这名学生中,选修物理的学生人数为

其中选修政治的学生人数为,所以.

故在这名学生中,从选修物理的学生中随机选取1人,

该学生选修政治的概率为.

(Ⅱ)设这六名学生分别为A1,A2,B1,B2,C1,C2

其中A1,A2选择方案一,B1,B2选择方案二,

C1,C2选择方案三.从这6名学生中随机选取2名,

所有可能的选取方式为:

A1A2,A1B1,A1B2,A1C1,A1C2,A2B1,A2B2,A2C1,A2C2

B1B2,B1C1,B1C2,B2C1,B2C2,C1C2,共有种选取方式.

记事件为“这2名学生除选修物理以外另外两门选课中有相同科目”.

种选取方式中,这2名学生除选修物理以外另外两门选课中

有相同科目的选取方式有A1A2,B1B2,C1C2B1C1B1C2B2C1

B2C2,A1C1,A1C2,A2C1,A2C2,共11种,因此.

(Ⅲ)在选取的1000名学生中,

选修至少两门理科课程的人数为人, 频率为.

选修至少两门文科课程的人数为人, 频率为.

从上述数据估计该市选课偏理的学生人数多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且函数图象上点处的切线斜率为.

(1)试用含有的式子表示,并讨论的单调性;

(2)对于函数图象上的不同两点如果在函数图象上存在点使得点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;

(2)当a时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 (  )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

298.8

1.6

1469

108.8

表中

(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)以知这种产品的年利率的关系为.根据(2)的结果求年宣传费时,年销售量及年利润的预报值是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案