【题目】直三棱柱(侧棱与底面垂直的棱柱)中,D为
中点,F为线段
的中点
.
(1)若M为中点,求证:
面
;
(2)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的离心率
,
是椭圆
上的动点,且点
到椭圆
焦点的距离的最小值为1.
(1)求椭圆的方程;
(2)过椭圆的右焦点
的直线
交椭圆
于
,
两点,当
时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是半圆
的直径,
是半圆
上除点
外的一个动点,
垂直于
所在的平面,垂足为
,
,且
,
.
(1)证明:平面平面
;
(2)当为半圆弧的中点时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为
,其中
为常数;
(1)若,且
是奇函数,求
的值;
(2)若,
,函数
的最小值是
,求
的最大值;
(3)若,在
上存在
个点
,满足
,
,
,使
,求实数
的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com