精英家教网 > 高中数学 > 题目详情
3.数列{an}满足a1=2,a2=2,an+2=2an+1-an+2.
①设bn=an+1-an,证明{bn}是等差数列;
②求{an}的通项公式.

分析 ①把原数列递推式变形,可得(an+2-an+1)-(an+1-an)=2,即bn+1-bn=2.再由已知求得b1=a2-a1=0,可得{bn}是以0为首项,以2为公差的等差数列;
②由①中的等差数列求出{bn}的通项公式,代入bn=an+1-an,利用累加法求得{an}的通项公式.

解答 解:①由an+2=2an+1-an+2,得
(an+2-an+1)-(an+1-an)=2,
由bn=an+1-an,得bn+1-bn=2.
又a1=2,a2=2,∴b1=a2-a1=0,
∴{bn}是以0为首项,以2为公差的等差数列;
②由①得bn=0+2(n-1)=2n-2,
∴an+1-an=2n-2.
则a2-a1=2×1-2,
a3-a2=2×2-2,
a4-a3=2×3-2,

an-an-1=2(n-1)-2(n≥2).
累加得:an-a1=2[1+2+…+(n-1)]-2(n-1),
∴${a}_{n}=2+2×\frac{n(n-1)}{2}-2(n-1)={n}^{2}-3n+4$.
验证a1=2适合上式,
∴${a_n}={n^2}-3n+4$.

点评 本题考查数列递推式,考查了等差关系的确定,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.数列{logkan}是首项为4,公差为2的等差数列,其中k>0,且k≠1,设cn=anlgan,若{cn}中的每一项恒小于它后面的项,则实数k的取值范围为$(0,\frac{\sqrt{6}}{3})$∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计.请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
 分组(分数)频数频率
[60,70)0.12
[70,80)20
[80,90)0.24
[90,100]12
 合计501

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列叙述正确的个数是(  )
①若p∧q为假命题,则p、q均为假命题;
②若命题p:?x0∈R,x02-x0+1≤0,则¬p:?x∈R,x2-x+1>0;
③在△ABC中“∠A=60°”是“cosA=$\frac{1}{2}$”的充要条件;
④若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$<0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)是定义在R上的偶函数,且F(x)=f(x)+x,若F(2)=3,则F(-2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是一个几何体的三视图,该几何体的体积是30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知球O的表面积为12π,则球O的体积为(  )
A.2$\sqrt{3}$πB.4$\sqrt{3}$πC.12$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tanθ=-$\frac{3}{4}$,$θ∈(\frac{π}{2},π)$,则sinθ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{5}^{x},x≤0}\end{array}\right.$,则$f[f(\frac{1}{4})]$的值是$\frac{1}{25}$.

查看答案和解析>>

同步练习册答案