精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的偶函数,且满足f(2+x)=f(2-x).
(Ⅰ)证明:f(x+4)=f(x);
(Ⅱ)当x∈(4,6)时,f(x)=
x2-x-2x-3
.讨论函数f(x)在区间(0,2)上的单调性.
分析:(1)先由偶函数寻求f(-x)与f(x)的关系,再转化f(2+x)=f(2-x)为f(4+x)=f(-x)即可;
(2)先求(0,2)上的解析式,再用导数研究单调性.
解答:解:(Ⅰ)因为函数f(x)是偶函数,
所以f(-x)=f(x),(1)(2分)
又f(2+x)=f(2-x)?f(2+2+x)=f(2-2-x)?f(4+x)=f(-x)(2)
由(1)、(2)得f(x+4)=f(x)(5分)
(Ⅱ)因为当x∈(4,6)时,f(x)=
x2-x-2
x-3

当0<x<2时,4<x+4<6,
由(Ⅰ)知f(x)=f(x+4)
=
(x+4)2-(x+4)-2
x+4-3

=
x2+7x+10
x+1
(7分)
f′(x)=
x2+2x-3
(x+1)2
(9分)
令f′(x)=0,得x=-3或x=l,因为0<x<2,所以x=1.
因为x∈(0,1)时,f′(x)<O,x∈(1,2)时,f′(x)>O,
所以函数以f(x)在(0,1)内单调递减,在(1,2)内单调递增.(12分)
点评:本题主要考查奇偶性和单调性以及转化化归思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案