【题目】如图,在直三棱柱中,底面△是等腰直角三角形,,为侧棱的中点.
(1)求证:平面;
(2)求异面直线与所成角的大小(结果用反三角函数值表示).
【答案】(1)证明见解析(2)
【解析】
(1)根据等腰直角三角形的性质得到,根据直棱柱的几何性质证得,由此证得平面.
(2)首先通过平移作出异面直线与所成的角(或其补角).解法一,通过解直角三角形求得异面直线与所成的角的正切值,由此求得异面直线与所成的角的大小.解法二,利用余弦定理解三角形,求得异面直线与所成的角的余弦值,由此求得异面直线与所成的角的大小.
(1)因为底面△是等腰直角三角形,且,所以,,
因为平面,所以,
又,
所以,平面.
(2)取点,连结、,则∥
所以,就是异面直线与所成角(或其补角).
解法一:由已知,,,所以平面,所以△是直角三角形,且,
因为,,所以,,
所以,异面直线与所成角的大小为.
解法二:在△中,,,,
由余弦定理得,.
所以,异面直线与所成角的大小为.
科目:高中数学 来源: 题型:
【题目】如图,有一块平行四边形绿地,经测量百米,百米,,拟过线段上一点设计一条直路(点在四边形的边上,不计路的宽度),将绿地分成两部分,且右边面积是左边面积的3倍,设百米,百米.
(1)当点与点重合时,试确定点的位置;
(2)试求的值,使路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且(nN*).
(1)求{an}的通项公式;
(2)设数列满足,Tn为数列{bn}的前n项和,求Tn;
(3)设*(为正整数),问是否存在正整数,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,C、D两点的坐标为,曲线上的动点P满足.又曲线上的点A、B满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程(为常数)有解,则解得个数一定是偶数;(4)是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列 的前项和为,对一切,点都在函数的图象上.
(1)求,归纳数列的通项公式(不必证明);
(2)将数列依次按1项、2项、3项、4项循环地分为,,, ;,,,;,…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;
(3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.
(1)求的值;
(2)设为坐标原点,过椭圆上的两点、分别作该椭圆的两条切线、,且与交于点。当变化时,求面积的最大值;
(3)在(2)的条件下,经过点作直线与该椭圆交于、两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.
(1)求椭圆的方程;
(2)设点在椭圆上,点在直线上,且,求证:为定值;
(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com