精英家教网 > 高中数学 > 题目详情
下列曲线中离心率为
6
2
的是(  )
A、
x2
2
-
y2
4
=1
B、
x2
4
-
y2
6
=1
C、
x2
4
-
y2
2
=1
D、
x2
4
-
y2
10
=1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:分别求出双曲线的a,b,c,再由离心率公式计算即可得到.
解答: 解:对于A.a=
2
,b=2,c=
2+4
=
6
,e=
c
a
=
3

对于B.a=2,b=
6
,c=
4+6
=
10
,e=
c
a
=
10
2

对于C.a=2,b=
2
,c=
4+2
=
6
,e=
c
a
=
6
2

对于D.a=2,b=
10
,c=
4+10
=
14
,e=
c
a
=
14
2

故离心率为
6
2
的是C.
故选C.
点评:本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点(0,1)的直线与抛物线y2=4x仅有一个公共点,则满足条件的直线共有(  )条.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线C:y2=4
3
x的焦点,P是C上一点,若|PF|=3
3
,则△OPF的面积为(  )
A、2
3
B、3
2
C、3
3
D、6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知海岛A与海岸公路BC的距离为50km,B、C间的距离为100km,从A到C,必须先坐船到BC上某一点D,船速为25km/h,再乘汽车,车速为50km/h.
设∠BAD=θ.记∠BAD=α(α为确定的锐角,满足tanα=
1
2

(1)试将由A到C所用时间t表示为θ的函数t(θ),并指出函数的定义域;
(2)问θ为多少时,使从A到C所用时间最少?并求出所用的最少时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=e2x-4aex-2ax,g(x)=x2+5a2,a∈R
(1)若f(x)在R上单调递增,求a的取值范围;
(2)记F(x)=f(x)+g(x),求证:F(x)≥
4(1-ln2)2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x2-x+3+
x2-x
的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的离心率为2,焦点与椭圆
x2
25
+
y2
9
=1的焦点相同,求双曲线的方程及焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

试验:连续抛掷一粒般子(骸子每一面数字分别为1,2,3,4,5,6)两次,记向上数字依次为a,b,事件A:“函数f(x)=lg(x2+ax+b2)定义域为R”.事件B:“函数g(x)=(a-π)x是减函数(其中π是圆周率)”.
(1)分别写出事件A与事件B所含基本事件;
(2)求事件A+B与事件AB发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入m=7,n=3,则输出的S值为(  )
A、7B、42C、210D、840

查看答案和解析>>

同步练习册答案