精英家教网 > 高中数学 > 题目详情

由曲线数学公式和直线y=x-4,x=1,x=2围成的曲边梯形的面积是________.

ln2+1
分析:曲线y=与直线y=x-4,x=2,x=1所围成的图形面积可用定积分计算,先求出图形横坐标范围,再代入定积分的公式求出结果即可.
解答:联立两条直线的方程 ,得
∴曲线y=与直线y=x-4,x=2,x=1所围成的图形面积为
=(-x2+lnx+4x)|12=ln2+1
故答案为:ln2+1
点评:本题考查利用定积分求封闭图形的面积,解题的关键是利用方程联立做出两个函数的交点坐标,不停地交点的坐标在解题中用不到,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由曲线y2=2x 和直线y=x-4所围成的图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线y=
1x
和直线y=x-4,x=1,x=2围成的曲边梯形的面积是
ln2+1
ln2+1

查看答案和解析>>

科目:高中数学 来源:2007-2008学年江苏省无锡一中高二(上)期中数学试卷(成志班)(解析版) 题型:填空题

由曲线和直线y=x-4,x=1,x=2围成的曲边梯形的面积是   

查看答案和解析>>

科目:高中数学 来源:2011年高考数学模拟试卷1(理科)(解析版) 题型:解答题

由曲线y2=2x 和直线y=x-4所围成的图形的面积为   

查看答案和解析>>

同步练习册答案