精英家教网 > 高中数学 > 题目详情

【题目】长方体中,

(1)求直线所成角;

(2)求直线与平面所成角的正弦.

【答案】1)直线所成角为90°;(2

【解析】

试题(1)建立空间直角坐标系,求出直线AD1B1D的方向向量,利用向量的夹角公式,即可求直线AD1B1D所成角;

2)求出平面B1BDD1的法向量,利用向量的夹角公式,即可求直线AD1与平面B1BDD1所成角的正弦.

解:(1)建立如图所示的直角坐标系,则A000),D1101),B1021),D100).

∴cos==0

=90°

直线AD1B1D所成角为90°

2)设平面B1BDD1的法向量=xyz),则

=﹣120),

可取=210),

直线AD1与平面B1BDD1所成角的正弦为=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC所对边分别为abc,且2acosC=2b-c

1)求角A的大小;

2)若AB=3AC边上的中线SD的长为,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的电脑知识竞赛中,将高一年级两个班参赛的学生成绩进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一,第三,第四,第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)补齐图中频率分布直方图,并求这两个班参赛学生的总人数;

(2)利用频率分布直方图,估算本次比赛学生成绩的平均数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将所有的正奇数按以下规律分组,第一组:1;第二组:357;第三组:911131517 表示n是第i组的第j个数,例如,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将下列问题的解答过程补充完整.

依次计算数列的前四项的值,由此猜测的有限项的表达式,并用数学归纳法加以证明.

解:计算

由此猜想 .(*

下面用数学归纳法证明这一猜想.

i)当时,左边,右边,所以等式成立.

(ⅱ)假设当时,等式成立,即

那么,当时,

等式也成立.

根据(i)和(ⅱ)可以断定,(*)式对任何都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “f(0)”是“函数f(x)是奇函数”的充要条件

B. p:,则

C. “若,则”的否命题是“若,则

D. 为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地某高中2018年的高考考生人数是2015年高考考生人数的1.5倍.为了更好地对比该校考生的升学情况,统计了该校2015和2018年高考情况,得到如下饼图:

2018年与2015年比较,下列结论正确的是( )

A. 一本达线人数减少

B. 二本达线人数增加了0.5倍

C. 艺体达线人数相同

D. 不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为.如果,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为 ,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.

1)求这批产品通过检验的概率;

2)已知每件产品的检验费用为50元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求的分布列及数学期望(保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.甲、乙两人做游戏:甲、乙两人各写一个数字,若都是奇数或都是偶数则甲胜,否则乙胜,这个游戏公平

B.次随机试验,事件发生的频率就是事件发生的概率

C.某地发行福利彩票,回报率为47%,某人花了100元买该福利彩票,一定会有47元的回报

D.有甲、乙两种报纸可供某人订阅,事件某人订阅甲报纸是必然事件

查看答案和解析>>

同步练习册答案