【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数 |
该兴趣小组确定的研究方案是:先从这组(每个有序数对叫作一组)数据中随机选取组作为检验数据,用剩下的组数据求线性回归方程.
(Ⅰ)求选取的组数据恰好来自相邻两个月的概率;
(Ⅱ)若选取的是月和月的两组数据,请根据至月份的数据,求出关于的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(Ⅱ)中所得到的线性回归方程是否是理想的?
参考公式:.
【答案】(1);(2);(3) 该小组所得线性回归方程是理想的.
【解析】
(1)该题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果;
(2)根据所给的数据,求出的平均数,根据求线性回归方程系数的方法,求出系数b,把b和的平均数代入求的公式,求出的值,写出回归直线方程;
(3)根据所求的回归直线方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到回归直线方程是理想的.
(1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种 ,所以
(2)由数据求得 , 由公式求得,
再由
所以关于的线性回归方程为
(3)当时,
同理, 当时, ,,
所以,该小组所得线性回归方程是理想的.
科目:高中数学 来源: 题型:
【题目】下面几种推理是类比推理的( )
A. 两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则
B. 由平面三角形的性质,推测空间四边形的性质
C. 某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.
D. 一切偶数都能被2整除,是偶数,所以能被2整除.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数,单位是,其中x表示鲑鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是8100个单位时,它的游速是多少?
(2)计算一条鲑鱼静止时耗氧量的单位数.
(3)若鲑鱼A的游速大于鲑鱼B的游速,问这两条鲑鱼谁的耗氧量较大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
经计算: , , , , , , ,其中分别为试验数据中的温度和死亡株数, .
(1)若用线性回归模型,求关于的回归方程(结果精确到);
(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.
(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据, ,……, ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入世纪以来,该产品的产量平稳增长.记年为第年,且前年中,第年与年产量万件之间的关系如下表所示:
若近似符合以下三种函数模型之一:,,.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,年的年产量比预计减少,试根据所建立的函数模型,确定年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1,平行四边形中, , ,现将沿折起,得到三棱锥(如图2),且,点为侧棱的中点.
(1)求证: 平面;
(2)求三棱锥的体积;
(3)在的角平分线上是否存在点,使得平面?若存在,求的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=,=
(Ⅰ)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利z与x,y的关系为,根据(Ⅱ)的结果回答下列问题:
(Ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?
(Ⅱ)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)写出直线BC的一个方向向量;
(2)设平面α经过点A,且BC是α的法向量,M(x,y,z)是平面α内的任意一点,试写出x,y,z满足的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com